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1 Useful Definitions

Since there are several ways to define Fourier and inverse Fourier transforms, the forms used
in this paper are listed here. Additionally the definitions of the sinc function along with its
Fourier transform, the rect function are listed for clarity. Finally a common expression for
the Dirac delta function is also included.

X(w) = /°° 2(t)e (1)

—00

o(t) = % /;O:OX(w)ei“’tdw (2)
sinc(t) = smﬂ(—:t) (3)
1l —7<w<nr
rect(w) = s lwl=m (4)
0 otherwise
5(k) = %/;O:Oe_jktdt (5)



2 Proof

The basic problem stems from the Nyquist sampling theorem where if a signal is sampled
more than twice as fast as its bandwidth, then the signal may be perfectly reconstructed.
A problem occurs when a signal is critically sampled so that the bandwidth is exactly one
half of the sampling rate. A simple example occurs when a sinusoid is sampled this way. It
turns out that at the critical sampling rate, the measured amplitude of the sinusoid will be
dependent upon the relative phase between the sinusoid and its sampling clock. Certainly
one can see that if a sinusoid is sampled on its zero crossings, that the samples will all be
identically zero, yielding no information. If the same sinusoid is sampled at its extrema, then
the sequence ---,—1,1,—-1,1,—1,1,--- will be found, assuming the sinusoid’s amplitude is
one. The problem addressed here is to show that when the alternating ones sequence is used
to reconstruct a continuous signal that the proper sinusoid is in fact reconstituted.

For the derivation, the sample period is taken as one, so the sample frequency is 2r To
start, the temporal function is written in terms of sinc functions.

o

z(t) = > (=1)"sinc(t — n) (6)

n—=—oo

Now move over to the frequency domain via Fourier transformation.

X(w) = /fo S (< 1) sinc(t — n)e 7 dt (7)
And swap the order of integration and summation.

Xw) = 3 (-1)" /jo sinc(t — n)e 9 dt (8)
Make a change of variable by substituting ¢ = ¢ + n.

X@) = % (-1 /Z sinc(f)e 9+ gf 9)
Factor out the non ¢ dependent portion from the integral.

Xw)= 3 (~1)eon / ~ sine(d)e 9 di (10)

n=—o00 o0



Recognizing the integral as just the Fourier transform of sinc(#).

o

X(w)= Y (=1)"e " rect(w) (11)

n—=—oo

Substituting /™ for —1 and factoring out rect(w).

X (w) = rect(w Z eI eI (12)
n=—oo
Combine exponentials.
X(w) =rect(w) Y ) (13)
n=—00

To resolve the summation, use the Poisson Summation formula. It is:
oo
Z f Z / 27r]nt dt (14)
n=—00 n=—00

Substituting exp(jn(m —w)) for f(n).

oo

Z ejn T—w) __ Z / 27r]nt€]t(7r w) (15)
Combine exponentials.
i 6jn(7r w) __ Z / (w—(2n+1)7))t dt (16)

Compare this integral with the definition of the Dirac delta function and equate w— (2n+1)7
with % in the definition.

/ e~ IW=@EDm g1 — 9 6 (1w — (20 + 1)7) (17)
The summation is - .
S M = N 98 (w— (20 + 1)7) (18)

Thus, the summation is seen to produce a series of Dirac delta functions occurring at odd
multiples of 7. Substitute the new summation formula into X (w).

X (w) = rect(w Z 21 6(w — (2n + 1)) (19)

n=—oo



Since only two of the delta functions coincide with the nonzero portion of the rect(w) function,
the infinite sum only needs two terms.

X(w) =2nrect(w) [6(w — 7) + 6(w + 7)] (20)
Convert back to the time domain via the inverse Fourier transform.

x(t) ! /Oo 27 rect(w) [6(w — 7) + 6(w + )] " dw (21)

T 21 oo

Perform the integration. I.e., the delta functions serve to sample the rest of the integrand.

z(t) = %(ej”t—kejﬂ) (22)
= cos(rt) (23)

Thus, the resulting cosine function has a frequency of 7, which is half of the sampling rate,
and it has the correct amplitude.



