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W
hile developing a
communications
receiver, the
author encoun-
tered a problem

that was efficiently solved using a
method called slope filtering, which is
a novel application of the standard
equations of linear regression. This
article introduces the slope filtering
process and its effective use in applica-
tions such as communications receiver
carrier recovery, signal rate of change
estimation, and signal transition and
transition-polarity detection.

MOTIVATION FOR SLOPE FILTERING
The slope fi ltering technique was
developed while attempting to design a
carrier recovery process for a commu-
nications system that used quadrature
(I/Q) modulation. The communi-
cations receiver had the typical prob-
lem that its local oscillator was not
frequency locked to that of  the
received signal’s original transmitter
oscil lator.  Since both oscil lators
(transmitter and receiver) have nearly
constant frequencies over short time
intervals, when the instantaneous
phase of the received signal was com-

pared to the phase of its corresponding
ideal equivalent (known from the pro-
tocol), the resulting phase offset error
function was approximately linear with
respect to time. To properly demodu-
late the received signal the receiver
must estimate, and then eliminate, this
phase error between the ideal and
received signals.

Because the receiver must oper-
ate with low signal-to-noise ratio
(SNR) input signals, the linear phase
error function’s excessive noise sug-
gested that a statistical method was
needed for the receiver to estimate
the phase offset error. It was in solv-
ing this problem that the author
developed the slope filtering scheme
to manipulate classic linear regres-
sion equations into a form designed
for efficient computation. We now
look at how this manipulation is car-
ried out and then return to the com-
munications receiver example.

LINEAR REGRESSION 
The time-domain slope filtering process
was developed by first borrowing the pro-
cedure of linear regression from the field
of statistics [1], [2]. If we have a set of N
ordered pairs (x0, y0), (x1, y1), . . . ,

(xN−1, yN−1) and we fit, via a least
squares method, a straight line through
the data then the regression line is
ŷ = α + β x̂, where
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where k = 0, 1, . . . , N − 1. The slope
of the best-fit line to an N-length seg-
ment of data is given by β . It is impor-
tant to recall that (1) and (2) are valid
for arbitrary sets of xk values and there
is no assumption of equal spacing for
the xk values.

As it is written, (2) doesn’t appear
amenable for efficient implementation
in a signal processing application. But
if we look at it from a DSP viewpoint
and apply some adroit logic and manip-
ulations, we can make (2) acceptable
for such use. Since programmable DSP
chips themselves are designed to effi-
ciently calculate vector dot products,
we seek to manipulate (2) into such a
form. This means we need to somehow
decouple the yk samples from the xk

samples, except for a final dot product
type of formulation.

So starting with (2), we first change
the index counter for yk from k to i
and then change the product of sums
in (2) to a double summation. These
changes result in
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where index i, just like k, counts from
zero to N − 1. Next we factor out the yk
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Based on (4), we have our desired expres-
sion 

β =
∑

i

βi yi (5)

where β i is defined as
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We have converted (2) into the vector
dot product in (5) where the xk and yk

samples are decoupled from each other.
Fortunately if all of the xi in (6) are
known a priori, then the βi coefficients
may be precomputed and stored in mem-
ory. So, if we have a block of data (N sam-
ples), we just use our prestored length-N
βi coefficients in a tapped-delay line filter
structure implementing (5) to find the
slope (rate of change) of the data. This is
the process we call slope filtering.

APPLICATION: RECEIVER 
CARRIER RECOVERY
Now that we see how to transform the
regression formula into a useful (for
signal processing tasks) form, we return
to its application to the communications
receiver problem. Because the receiver
uses an independent frequency reference
for heterodyning, the baseband signal
will have a residual frequency and phase
offset when compared to the ideal. We
need to estimate these errors to be able
to correct them. 

To find the error function both the
received and ideal signals are represented
in complex polar form and then the dif-
ferences in the arguments of their corre-
sponding samples become the samples of
the error function. For relatively short
time duration signals, the error function
is well approximated as a linear function

where its slope represents the frequency
offset and the intercept represents the
phase offset between the transmitter’s
and receiver’s oscillators.

By applying (5) to the error function,
the approximate rate of change of phase
is found. And of course the rate of phase
change is equal to the frequency; thus we
can estimate the frequency offset of the
receiver. The regression calculation may
be used to find the frequency offset by
applying it to the phase error function.
Unwrapping the error function’s phase
may be needed to preserve the linearity
of the error function but, since its under-
lying structure is linear, unwrapping is
quite easy. If (1) is also manipulated into
a dot product formulation, and it is
applied to the error function, the initial
(at the start of the data segment under
analysis) phase error is found. A digital
quadrature oscillator [3], initialized with
the negatives of the frequency and phase
offsets, can be used to correct the
received signal’s frequency and phase
errors by simple modulation. 

APPLICATION: SIGNAL RATE 
OF CHANGE ESTIMATION

REAL-TIME RATE OF 
CHANGE ESTIMATION 
For applications where continual signal
rate of change estimations are needed, as
opposed to the single dot product calcu-
lation of (5), when the xi samples are
equally spaced and ordered from low to
high we can write xk = x0 + k where
k = 0, 1, 2, . . . , N − 1. Hence we are
looking at a set of N consecutive equi-
spaced xk samples. Substituting our
expression for xk into (6) results in
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which after significant algebraic simplifi-
cation becomes

βi = 12 · i − 6(N − 1)

N(N2 − 1)
(8)

giving us the βi coefficients for use in a
N-stage tapped-delay line finite-impulse
response (FIR) structure to compute our
desired rate of change β in (5). 

If the delay line structure used to
implement (5) is designed for filter con-
volutions instead of correlations, then
the βi coefficients need to be reversed in
order. Since the βi coefficients have neg-
ative symmetry, a simple negation will be
sufficient as shown in Figure 1.

The units for β in (5) are the units
of y per sample interval. So, for exam-
ple, if y is in volts and we are sampling
at a 1 kHz rate, then the units of β are
volts per millisecond.

PROPERTIES OF RATE CHANGE 
OF CHANGE ESTIMATION
Equation (8) is remarkable for sever-
al reasons.

■ It represents the coefficients of an
odd symmetric linear-phase FIR filter,
which means the delay is a constant
of (N − 1)/2 samples. In addition,
half of the multiplications in (5) may
be eliminated by using a “folded FIR”
filter structure. 
■ Its result is origin independent!
The βi coefficients don’t change as we
traverse the data as evidenced by the
fact the starting value x0 is not a part
of (8). So in terms of implementing
(5) via a filter, this means the coeffi-
cients are time-invariant.
■ The βi coefficients define a linear
ramp. This means we are in effect
correlating our signal with a ramp to
find the slope. This may be viewed as
optimal in the sense of matched fil-
tering allowing the user to easily
pick an optimal N . That is, if our
transitions are expected to span M
samples, then we make the βi coeffi-
cients M samples in length. And this
brings us to the important observa-
tion that transitions usually don’t
exist in isolation, they are preceded
and followed by generally level sig-
nals. This means that the span of the
βi coefficients may be longer than
just the transition width. In fact this
super spanning can increase the
SNR of our slope filter’s output! Of
course there are practical limits to
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the amount of super spanning, but
having a span 20% or 50% greater
than the transition width is certainly

acceptable. In the case of pulse
detection with matched filtering in
mind, the number of βi coefficients

may be set to the number of samples
comprising the pulse. But if super-
spanning is appropriate, a greater
number of coefficients may yield the
highest SNR.

APPLICATION: SIGNAL 
TRANSITION DETECTION
Another useful application of time-
domain slope filtering is signal transi-
tion detection. Figure 2 illustrates this
idea where a series of noisy input sig-
nals with transitions are the red
traces, and the outputs of the slope fil-
ter (delay compensated on the graphs)
are shown as the black traces. In that
figure, the length of the input signal’s
transition is 80 samples. Examples of
super-spanning are shown in Figure
2(b) and (c).

Why does time-domain slope filter-
ing work so well when compared to
ideal differentiators? By inspecting the
coefficients for each of these cases, we
find that the regression method places
the strongest weights at the ends of the
data span and conventional differentia-
tors weigh heaviest near the middle.
Thus from a “torque” calculation point
of view, conventional differentiators
rely strongly on fewer terms (all near
the middle) and therefore the result is
more susceptible to noise. One can also
note that the difference is that in time
domain slope filtering a first-order
polynomial is fitted to the data, where-
as with a traditional differentiator a
low-order trigonometric polynomial is
fitted to the data.

Even if a differentiator is designed
with the Parks-McClellan (PM) algo-
rithm to closely match the perform-
ance shown in Figure 2(a), it will
generally not fair well when the noise
levels are increased. That is because a
trigonometric polynomial fit admits
polynomial terms higher than  first
order. To see this, recall that the PM
algorithm f its  a  weighted sum of
s inusoids  to the di f ferentiator ’s
desired frequency response.  And,
when transformed back to the time
domain, its impulse response will
contain polynomial terms higher than
the first power.

[FIG2] Time-domain slope filtering examples: (a) span N = 21, (b) N = 101, and
(c) N = 101 with a very noisy input signal.
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[FIG1] Real-time slope filtering structure.
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APPLICATION: SIGNAL TRANSITION-
POLARITY DETECTION
Our noise-tolerant time-domain slope
filtering scheme also comes in handy in
applications where one just wishes to
know if a signal is increasing or decreas-
ing, for example when detecting the
polarity of signal transitions. In this
case, we can multiply (8) by any positive
number, since we only need the sign
(positive or negative) of (5). For a start,
just remove (multiply it out) the denom-
inator of (8). This results in

β̂i = 12i − 6(N − 1) (9)

and also divide by 12 to yield

β̃i = i − 1
2
(N − 1). (10)

Now (5) becomes (for polarity detection
only)

Polarityodd N

= sgn

[
N −1∑
i =0

(
i − N − 1

2

)
· yi

]
.

(11)

For example with N = 7, we have 

PolarityN =7 =
sgn[−3y0− 2y1− y2+ y4+ 2y5+ 3y6].

(12)

And for even N, we can rescale (10) by
doubling all its coefficients so they are
integers. For even N, this formulation
results in

Polarityeven N

= sgn

[
N −1∑
i =0

(2i − (N − 1)) · yi

]
.

(13)

For example when N = 6 we have

PolarityN =6 =
sgn[−5y0− 3y1− y2+ y3+ 3y4+ 5y5].

(14)

The polarity detection algorithms in (11)
and (13) are expressed in forms amenable
to fast calculation.

CONCLUSIONS
We presented a novel way of manipu-
lating the standard equations of

regression analysis into a form that is
highly compatible with the methods of
digital signal processing and, from
them, derived a computationally effi-
cient slope-filtering differentiator, as
defined in (5) and (6), that is superior
in its noise tolerance relative to PM
designed differentiators. We extended
the algorithm with a focus on both
transition detection and transition-
polarity detection in (11) and (13).
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for ensuring the high quality of the arti-
cles published in SPM. We are indebted to
Professor Ray Liu, in his role of VP-
Publications, and Mercy Kowalczyk, SPS
executive director and SPM associate edi-
tor, for their valuable advice. Eric Zavesky
of Columbia University has provided criti-
cal assistance in maintaining the Web
sites and review database. Finally, the
senior managing editor of SPM, Geri
Krolin-Taylor of IEEE, together with her
editing staff, once again demonstrated
the highest level of professionalism, cre-
ativity, and work ethic. They are indispen-

sable assets for any editor running a
dynamic publication like SPM.

With this issue, the magazine will be
transitioning to a new team of capable
hands. Li Deng, current area editor for
feature articles, will be at the helm serv-
ing as the new editor-in-chief. He will be
joined by Min Wu (incumbent area editor
for newsletter) and new blood, Antonio
Ortega, leading the feature articles sec-
tion, Dan Shonfeld leading the special
issues section, and Ghassan AlRegib lead-
ing the columns/forum section. These
individuals are respected pioneers and

active volunteers in the Society. I have
no doubt that, with their collective vision
and leadership, SPM will continue its
successful momentum and move to an
even higher stature. I now look forward
to joining all of you, the readers, in not
only enjoying the articles but also more
importantly writing articles and provid-
ing feedback for SPM. [SP]
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